CHAPTER

Developing Understanding of Measurement

chard Lehrer, Vanderbilt University

Measurement is an enterprise that spans both mathe-
matics and science yet has its roots in everyday experi-
ence. Most of us can probably recollect instances from
childhood when we wondered why objects look smaller
as we walk away from them or why their appearance
changes with transitions in perspective. Later, we recast
and comprehend these everyday experiences by modeling
and measuring aspects of space so that measures of tri-
angles, coupled with assumptions about light, explain
the changes wrought by transitions in perspective
(Gravemeijer, 1998). I recall puzzling about how the
announcers of the Mercury rocket launches at Cape
Canaveral knew the height of a rocket in flight and
wondering how I might know the height my model
rocket attained at its apogee, even without benefit of a
sk tape measure. My speculations had their practical
side as well. My grandfather was a carpenter who
thought every young apprentice should know not only
the measure on one side of his six-foot extending ruler

1 1/2 feet) but also its counterpart on the opposite
side (e.g., 4 1/2 feet). My recollections encompass mea-
sure's dual qualities of practical grasp and imaginative
reach. On the one hand, to measure is to do. On the
other hand, to measure is to imagine qualities of the
world such as length and time.

This synthetic character of measure is readily appar-
ent in its history. For example, Eratosthenes estimated
the circumference of the earth nearly 2,200 years ago by
both imagining and doing. He imagined or assumed that
the earth was spherical, that the rays of the sun could be
considered to be parallel, and that the form of a circle
approximated the surface of the earth. As a matter of
practicality, he knew that in a well located at Syene, sun-
light penetrated all the way to the bottom. He also knew
that this absence of shadow meant that light followed a
line like that depicted in Figure 12.1. By practical meas-
ure, he knew that Alexandria, located approximately
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due north of Syene, was 5,000 stades away. A stick at
Alexandria cast a shadow with an angle measure of 1/50
of the arc of a circle (about 7 1/2 degrees). So this meant
that the circumference of the earth must be 250,000
stades, or about 25,000 miles, not too far from the mod-
ern estimate. Eratosthenes also appreciated the potential
error in his measure, adjusting it because Alexandria is
not quite due north from Syene.

Figure 12.1. Eratosrhenes approximated the circumfer-
ence of the earth by using shadows.

The investigation conducted by Eratosthenes illus-
trates a deep connection between modeling space and ex-
ploring its extent. Measuring space requires the con-
struction of a model to represent it and also tools that
embody and extend the model. Measurement is inher-
ently imprecise. Sources of imprecision include model-
world mismatches, measurement-device qualities, and
observer qualities (Kerr & Lester, 1976).

Ironically, because of Euclid's emphasis on straight-
edge and compass constructions, geometry is often treated
separately from measurement. This approach has some
virtues, especially when it leads to generalizations that
go beyond the natural world. Yet measurement
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has traditionally served as one route for developing
mathematical knowledge of space (Kline, 1959). A peda-
gogical implication of this history is that learning to
measure qualities of space, such as length, area, volume,
and angle, provides a practical means for developing fun-
damental understandings of its structure. For these rea-
sons, substantial pedagogical value is gained in realigning
measure and space. Moreover, conceptions involved in
measuring space readily extend to other phenomena,
such as mass or time, as well as to relational measures,
such as rate. These extensions often prove crucial to the
development of scientific reasoning (Lehrer & Schauble,
2000).

Because most of the research to date focuses on chil-
dren's conceptions of spatial measure, the review reflects
this research concentration. The first section of this
chapter describes components of a mathematics of meas-
ure from the perspective of child development. This de-
velopmental perspective is influenced by Piageifs studies
of important transitions in children's conceptions of spa-
tial measure (Piaget, Inhelder, & Szeminska, 1960) and
also by related research guided by other traditions (e.g.,
Davydov, 1975; Miller, 1984). In the sections that follow,
I employ frameworks from this developmental
literature to organize a summary of children's evolving
understandings of length, area, volume, and angle meas-
ure. These progressions are based primarily on two kinds
of evidence: clinical interviews conducted with children
at various ages or grades and longitudinal study of
transitions in children's reasoning during the course of
traditional schooling.

More recent work examines the acquisition of measure
concepts in classrooms that emphasize guided reinven-
tion of the underpinnings of measure rather than simple
procedural competence. This contemporary work
suggests the need to revise previous accounts of develop-
ment to include consideration of the mediational means
(e.g., Wertsch, 1998), including forms of mathematical
notation and argument that are employed by teachers
and students during the course of instruction about
measurement. For example, as I subsequently describe
more fully, children's sense of length measure as a paced
distance evolves when they shift from the plane of activ-
ity to representing their paces as a ruler that uses their
footsteps as the units of measure. In the final section
of this chapter, I summarize research that extends the in-
vestigation of conceptions of measure in other directions,
including student thinking about the nature and sources
of error of measurement.

Understanding Measure: A
Developmental Perspective

Much of the research in the field draws on the seminal
contributions of Piaget (Piaget & Inhelder, 1948/1956;
Piaget et al., 1960), which continue to be a wellspring for
contemporary research. Piaget's analysis suggested that
conceptions of spatial measure were not unitary but
instead consisted of a web of related constructs leading
to the eventual construction and coordination of stan-
dard units. Piaget was careful to distinguish between
activity, such as using a ruler, and reflective abstraction
on activity, such as understanding the role played by the
identical units in the ruler. In Piaget's view, understanding
of measure entailed a successive mental restructuring of
space, so that conceptions of measure increasingly
encompassed subdivisions of space and translations of
these subdivisions to comprise a measurement.

Piaget and his colleagues further suggested that
conceptual change was tightly coupled with the overall
development of reasoning. Accordingly, conservation
(recognition of invariance under transformation, under-
girded by such mental operations as reversibility, a form
of mental undoing) of length, area, volume, and angle
was a hallmark of, and constraint on, development in
each domain of spatial measure studied by Piaget. Mea-
surement was also considered to be tightly coupled with
quantity, so that measurement was an outgrowth of
counting. However, studies conducted in the past two
decades generally fail to support this tight coupling of
the development of understanding of spatial measure
with quantity or even with general capacities for mental
logic. For example, Hiebert (1981a, 1981b) conducted an
instructional study in which first-grade children, some of
whom conserved length and some of whom did not, were
taught important underpinnings of length measure, such
as iterating units (accumulating units by counting) to
measure lengths. Hiebert found that acquiring ideas like
iteration was generally unrelated to a child's status as a
conserver. The sole component related to conservation
was recognition of the inverse relationship between the
length of a unit of measure and the resulting count (e.g..
smaller units produce larger counts). In a like vein.
Miller (1984) noted that even preschool children gener-
ally employed systematic procedures to ensure equal dis-
tributions of snacks (measured via lengths and areas)
when solving problems requiring spontaneous measure-
ment procedures. The general lack of relationship be-
tween conservation and understanding of measure 1$
also characteristic of other domains of spatial measure
(Carpenter, 1975).
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Studies generally fail to support Piaget's claims that
general forms of logic strongly constrain children's ideas
about measure. These findings imply that little value is
wined by delaying or withholding instruction until a
chiild is mentally "ready" to learn about measurement. In
contrast, it has proved useful to consider conceptual
changed about measure as change in a network or web of
ideas related to unit. Some of the most prominent
conceptual foundations include the following:

(1) Unit-attribute relations. Correspondence between
units and the attribute being measured must be estab-
lished. Although this relationship may seem transparent,
especially in light of the ubiquity of tools like rulers and
protractors, children in fact often misappropriate units of
length measure for the measurement of other spatial ex-
tent, such as area, volume, and, perhaps most notori-
ously, angle. The suitability of a particular unit of meas-
ure usually involves a trade-off between models of the
space being measured and the tools that are practical for
the purposes at hand. For example, estimating the area of
a playground might involve decisions about a model of it,
such as a parallelogram, and the purposes for which the
measure is intended. Should the measure be made to the
nearest square inch? Square foot? In a similar vein, con-
sider the distance between two cities. Can units of time
(e.g., it's 2 1/2 hours between Madison and Chicago) be
used instead of units of length to measure distance? If so,
what assumptions need to be made?

(2) Iteration. Units can be reused; this understanding
is based on subdivision (to establish congruent parts) and
translation. For example, to iterate a unit of length, a
child must come to understand length as a distance that
can be subdivided. Moreover, these subdivisions can be
accumulated and, if necessary, rearranged to measure a
length. Hence, given a fixed length eight units long and a
single unit, one measures the length by subdividing it
into eight congruent partitions. This task is accom-
plished by translating the unit successively from the start
point to the end point.

(3) Tiling. Units fill lines, planes, volumes, and angles.
For example, to measure a length, one needs to arrange
units in succession. Young children often find it useful to
lay units in succession but sometimes are unaware of the
consequences of leaving "cracks." If so, using counts of
units as representations of length is problematic. Tiling
(space-filling) is implied by subdivision of lengths,
areas, volumes, and angles, but this implication is not
transparent to all children.

(4) Identical units. If the units are identical, a count
will represent the measure. Mixtures of units should be
explicitly marked, for example, as "5 yards and 3 inches,"
not "8."

(5) Standardization. Conventions about units facilitate
communication. Though arbitrary, standard units often
have interesting histories. For example, Nickerson (1999)
suggests that the relation of 12 inches to a foot likely
arose from the confluence of several related develop-
ments. First, the ratio of the spans of thumb and foot is
usually about 12, an important ratio for measurement
centered on readily available parts of the body. Such a
ratio would have had particular advantages before the
advent of mass-produced tools. Second, many fractions
of 12, like one half or one third, are integers, making
subdivision relatively convenient. Third, 12 is the sum of
3,4, and 5 and thus can be used to make perpendicular
joints with beams: Mark 3 units along one beam from the
end at which the joint will be made, mark 4 along the
other, and then adjust the angle so that the 5-unit beam
touches the ends of both lengths simultaneously.

(6) Proportionality. Measurements with different-sized
units imply that different quantities can represent the
same measure. These quantities will be inversely propor-
tional to the size of the units. Consequently, a foot-long
strip has a measure of 12 inches, or 24 half-inches.

(7) Additivity. Units of Euclidean space can be de-
composed and recomposed, so that, for example, the
total distance between two points is equivalent to the
sum of the distances of any arbitrary set of segments that
subdivide the line segment. For example, if B is any point
on the segment A C, then AB + BC =AC. This recogni-
tion is implicit in studies of conservation, in which, for
example, the length of an object is not affected by its
translation to a new point. Similarly, the lengths of two
paths may be different even if they begin and end at the
same points on the plane, because the sum of the parts of
one path exceeds the sum of the parts of another. The
recognition of this component of spatial measure is often
a significant intellectual milestone.

(8) Origin (zero-point). Measurement often involves
the development of a scale. Although scale properties
vary with different systems of measure, measures of
Euclidean space conform to ratios, so that, for example,
the distance between O and 10 is the same as that
between 30 and 40. This conformity implies that any
location on the scale can serve as the origin. Other com-
mon forms of measurement may not have these proper-
ties. For example, when judging how much one likes
chocolate ice cream on a five-point scale, it is difficult to
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know whether a judgment of 4 indicates twice as much
affection as a judgment of 2.

Collective coordination among these eight compo-
nents constitutes an informal theory of measure. Studies
conducted in the past two decades suggest that children's
developing sense of measurement is marked by gradual
coordination and consolidation of these components.
Research has been oriented toward tracking transitions
across a profile and range of understandings rather than
a unitary construct of measurement. For example, a child
might be able to subdivide a line, yet fail to appreciate
the function of identical subdivisions. Children's theo-
ries, of course, have a limited scope and precision when
contrasted with those developed by mathematicians and
scientists. Nevertheless, understanding these constituents
of measure and their relations establishes a firm ground
for future exploration of the mathematics of measure,
and their acquisition also implies coming to understand
the (Euclidean) structure of space.

In the following sections, I review developmental
progressions of children's understandings of length, area,
volume, and angle measure with an eye toward docu-
menting important milestones in children's notions of
the components of measure noted previously. The review
is intended to be representative, not exhaustive. Two
kinds of studies are included: cognitive development
studies and classroom studies. Studies of cognitive de-
velopment typically engage groups of children in activities
designed to reveal how they think or understand an issue.
Children at different ages (cross-sectional) are compared,
or the same children are followed for a period of time,
(longitudinal) to observe transitions in thinking. These
studies provide glimpses of children's thinking under
conditions of activity and learning that are typically
found in the culture. In contrast, classroom studies mod-
ify instruction and then investigate the effects of these
modifications on children's thinking or understanding.
The resulting portraits of student reasoning are not
always in close agreement with those obtained from
studies of cognitive development. One reason may be
that the cultural experiences of measure are less frequent
and perhaps less thought-provoking than those deliber-
ately created in the design of instruction.

Length Measure

Studies of Cognitive Development

Length measure builds on preschoolers' understanding
that lengths span distances (e.g., Miller & Baillargeon,
1990). Measure of distances requires restructuring space so
that one "sees" counts of units as representing an iteration

of successive distances. Iteration refers to accumulating
units of measure to obtain a quantity, such as 12 inches.
It rests on a foundation of subdividing length and order-
ing the subdivisions (Piaget et al., 1960). Thus, a count
of n units represents a distance of n units. Studies of chil-
dren's development suggest that acquisition of this un-
derstanding involves the coordination of multiple con-
structs, especially those of unit and zero-point. As noted

previously, the construction of unit involves a web of
foundational ideas including procedures of iteration,
recognition of the need for identical units, understanding

of the inverse relationship between magnitude of each

unit and the resulting length measure, and understanding
of partitions of unit. Understanding zero-point involves

the mental coordination of the origin and endpoint of
the scale used to measure length, so that the length from

the 10 cm mark on the scale to the 20 cm mark is consid-

ered equivalent to that between 2 cm and 12 cm. De-

velopmental studies indicate that these constructs are not

acquired in an all-or-none manner, nor are they neces-

sarily tightly linked. Most studies suggest that these

understandings of units of length are acquired over the

course of the elementary grades, although significant
variations in developmental trajectories occur when dif-

ferent forms of instruction are employed.

Children's first understandings of length measure
often involve direct comparison of objects (Lindquist,
1989; Piaget et al., 1960). Congruent objects have equal
lengths, and congruency is readily tested when objects
can be superimposed or juxtaposed. Yet young children
(first grade) also typically understand that they can com-
pare the length of two objects by representing the
objects with a string or paper strip (Hiebert, 1981a,
1981b). This use of representational means likely draws
on experiences of objects "standing for" others in early
childhood, such as in pretend play in which a banana can
represent a telephone yet retain its identity as a fruit
(Leslie, 1987) or in the ability to distinguish, yet coordi-
nate, models or pictures and their referents (deLoache,
1989). Moreover, first graders can use given units to find
the length of different objects, and they associate higher
counts with longer objects (Hiebert, 1981a, 1981b,
1984). Most young children (first and second graders)
even understand that counts of smaller units will be
larger than counts of larger units, given the same length
(Carpenter & Lewis, 1976; Lehrer, Jenkins, & Osana,
1998b).

These understandings of the practical use of units are
probably grounded in childhood experiences in which
children observe others use rulers and related measure-
ment devices and incorporate the resulting lessons
learned into their play. However, facility with counting
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not i mply understanding of length measure as a
metric distance. Because early measure understanding
es as a collection of developing concepts, children
understand qualities of measure, such as the inverse
mediation between counts and size of units, yet not fully
appreciate other constituents of length measure, such as
function of identical units or the operation of
iteration of unit (Lehrer et al., 1998b). These concepts are
much more problematic for primary-grade children (i.e.,
axes 6 to 8). Children often have difficulty creating units
of equal size (Miller, 1984), and even when provided
equal units, first and second graders often do not under-
stand their purposes, so they freely mix, for example,
Inches and centimeters, counting all to "measure" a
length (Lehrer et al., 1998b). For these students, meas-
ure is not significantly differentiated from counting
(Hatano & Ito, 1965). For example, younger students in
the study by Lehrer , Jenkins, and Osana (1998b) often
imposed their thumbs, pencil erasers, or other invented
units on a length, counting each but failing to attend to
inconsistencies among these invented units (and often
mixing their inventions with other units). Even given
identical units, significant minorities of young children
fail to spontaneously iterate units of measure when they
"run out" of units, despite demonstrating procedural
competence with rulers (Hatano & Ito, 1965; Lehrer
et al., 1998b). For example, given 8 units and a 12-unit
length, some of these children lay the 8 units end to end
and then decide that they cannot proceed further. They
cannot conceive of how one could reuse any of the
8 units, perhaps because they have not mentally sub-
divided the remaining space into unit partitions. More-
over, young children (e.g., first grade or kindergarten)
may coordinate some of the components of iteration,
such as use of units of constant size and repeated applica-
tion, yet not others, such as tiling. For example, first and
second graders may leave "spaces" between identical
units even as they repeatedly use a single unit to "meas-
ure" a length (Horvath & Lehrer, 2000; Koehler &
Lehrer, 1999).

Children's understanding of zero-point is particularly
tenuous. Only a minority of young children understand
that any point on a scale can serve as the starting point,
and even a significant minority of older children (e.g.,
fifth grade) respond to nonzero origins by simply reading
off whatever number on a ruler aligns with the end of the
object (Lehrer et al., 1998a). Many children throughout
schooling begin measuring with one rather than zero
(Ellis, Siegler, & Van Voorhis, 2001). Parts of units
create additional complexities. For example, Lehrer,
Jacobson, Kemeny, & Strom (1999) noted that some
second-grade children (7 to 8 years old) measured a

2 and 1/2-units strip of paper by counting "1, 2, [pause],
3 [pause], 3 and a half." They explained that the 3 referred
to the third unit counted, but "there's only a half," so in
effect the last unit was represented twice, first as a count of
unit and then as a partition of a unit. Yet these same chil-
dren could readily coordinate different starting and ending
points for integers (e.g., starting at 3 and ending at 7
yielded the same measure as starting at 1 and ending at 5).

Classroom Studies

Recent work has focused on establishing developmental
trajectories for understanding of linear measure in class-
rooms that promote representation and communication.
These studies suggest that important gains are realized in
understanding when children's learning is mediated by
systems of inscription (e.g., what children write) and
notation (Greeno & Hall, 1997). For example, Clements,
Battista, and Sarama (1998) reported that using com-
puter tools that mediated children's experience of unit
and iteration helped children mentally restructure
lengths into units. Other recent studies place a premium
on making transitions from embodied forms of length
measure, such as pacing, to inscribing and symbolizing
these forms as foot strips and other kinds of measurement
tools (Lehrer et al., 1999; McClain, Cobb, Gravemeijer,
& Estes, 1999). Inscriptions like foot strips help children
reason about the mathematically important components
of activity (e.g., the lengths spanned while pacing) so that
paces are transformed into units of measure. By con-
structing tools, children have the opportunity to discover
the measurement principles that guide the design of
these tools. Although constructing and using tools have
a long tradition in teaching practice, recent studies of
mediated activity provide important details about how
these practices contribute to conceptual change (e.g.,
Wertsch, 1998). Generally, asking children to represent
their experiences tends to help them select and make vis-
ible mathematically important components of activity.
For example, when pacing, mathematically fruitful com-
ponents include "lifting out" paces as units that can be
iterated to obtain a length measure and deciding what is
meant by "walking straight." Other elements of the
activity, such as maintaining one's balance while pacing,
are placed in the (mathematical) background.

Further work in classrooms suggests the importance
of providing opportunities for children to repeatedly
"split" (Confrey, 1995; Confrey & Smith, 1995), or parti-
tion, lengths to come to understand unit partitions. For
example, in second-grade classrooms where students had
the opportunity to design rulers, students were moti-
vated by their previous experience with rulers to add
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"marks" that would help them measure lengths that were
parts of units, for instance, 3 1/2. To develop these unit
partitions, children folded their unit (represented as a
length of paper strip) in half, then repeated this process
to create fourths, eighths, and even sixty-fourths (Lehrer
et al., 1999). In addition to developing procedures for
partitioning, children were able to examine the resulting
partitions (inscribed as fold lines) by unfolding the
resulting strips so that they could design their own ruler
marks. Eventually, these actions helped children develop
their first understandings of operator conceptions of
fractions (e.g., half of half of half, etc.).

Classrooms are excellent forums for understanding
the importance of conventional units. For example,
if children measure the length of objects with differ-
ent units, such questions as "Which object is longest?"
may direct attention to the communicative functions of
standard units. Classroom studies also point to creative
ways of melding measure and the study of form in the ele-
mentary grades in ways that recall their historical co-
development. For example, children in Elizabeth Penner's
first- and second-grade class searched for forms (e.g.,
lines, triangles, squares) that would model the configura-
tion of players in a fair game of tag (Penner & Lehrer,
2000). Attempts to model the shape of fairness initiated
cycles of exploration involving length measure and prop-
erties related to length in each form (e.g., distance from
the corners of a square to the center). Eventually, children
decided that circles were the fairest of all forms because
the locus of points defining a circle was equidistant
from its center. This insight was achieved by developing
understanding of linear measure and by employing this
understanding to explore the properties of shape and
form. Such tight coupling between space and measure
is reminiscent of Piaget's investigations but helps one .to
see these linkages as objects of instructional design
rather than as pre-existing qualities of mind.

Area Measure

Cognitive Developmental Studies

In many ways, studies of children's conceptions of area
measure parallel those discussed for length. I focus here
on a longitudinal investigation of 37 children in grades
1 through 3 who were followed for 3 years, because the
results of this study are representative of much of the
literature (Lehrer et al., 1998b). Young children (e.g., in
first and second grades) often treat length measure as a
surrogate for area measure. For example, Lehrer et al.
(1998b) found that some young children measured the
area of a square by measuring the length of a side, then

moving the ruler over a bit and measuring the length
between the sides again, and so on, treating length as a
space-filling attribute. When provided manipulatives

(i.e., squares, right triangles, circles, and rectangles) for
use in finding the area measure of a variety of forms,
most children in grades 1 through 3 freely mixed units
and then reported the total count of the units. The two
most commonly observed strategies with use of manipu-

latives were boundedness and resemblance. That is, children
deployed units in ways that would not violate the bound-

aries of closed figures, and they often used units that

resembled the figure being measured (e.g., triangles for
triangles). Young children were also liable to ignore the
space-filling properties of units, preferring instead to
honor the boundaries of the forms, so when presented

with a choice between "leaving cracks" and overlapping
a boundary, they invariably chose the former. Figure 12.2

displays two second-grade students' approaches to meas-
uring the "space covered" by their hands (Lehrer et al.,
1998a). The solution labeled "a" uses beans as units of
measure, and the one labeled "b" uses spaghetti. Both
units were chosen because they "looked like" (resembled)

the contour of the hand. Both solutions also ignore the
"cracks" (space-filling). A third solution, proposed by
their teacher and labeled "c," consisted of an overlay of
square units of measure. The class initially rejected this
solution, both because the squares "went over" the out-

line of the hand (boundedness) and because the squares
"looked wrong" (did not resemble the contours of the
hand).

—

(c)

Figure 12.2. Students proposed measures using (a) beans,
(b) spaghetti, and (c) an overlay of square units to measure
the space covered by their hands,



Over the elementary grades, area measure becomes
differentiated from length measure, and the space-filling
(tiling) property of the unit becomes more apparent to
most children (Lehrer et al., 1998a). However, other as-
pects of area measure remain problematic, even though
students can recall standard formulas for finding the
areas of squares and rectangles. Fewer than 20% of the
students in the study by Lehrer et al. (1998b) believed
that area measure required identical units, and fewer
than half could reconfigure a series of planar figures so
that known area measures could be used to find the
measures of the areas of unknown figures. Just as linear
measure requires restructuring a length into a succession
of distances, area measure requires restructuring of the
plane. Consequently, students found it very difficult to
decompose and then recompose the areas of forms to see
one form as a composition of others.

Similarly, Battista, Clements, Arnoff, Battista, and
Can Auken Borrow (1998) reported that students in the
primary grades often cannot structure a rectangle as an
array of units. In a more extensive exploration of chil-
dren's strategies for structuring rectangular arrays across
grades 1 through 4, Outhred and Mitchelmore (2000)
found a wide range of conceptions of array. Students
were asked, for example, to find the number of 1-cm
squares needed to cover a 6-cm by 5-cm rectangle. Many
first and second graders either incompletely covered the
rectangle or drew coverings that varied the size of the
square unit. Third graders were more successful in using
concrete units to cover the rectangle, but most did not
use the structure of the rows of the array to accomplish
this task, relying instead on perception. Only in the
fourth grade did the majority of students use the dimen-
sional structure of the array to measure it. These stu-
dents used one dimension to find the number of units in
each row and used the other to find the number of rows.
Nevertheless, a significant minority (about 30%) of these
older students simply tried to count squares using the
more primitive strategies. These findings are especially
troublesome in light of the widespread use of area
models of fractions and the use of array models for
multiplication, which apparently assume knowledge that
may not be in place.

In sum, conceptual development in area measure
lagged behind that of length measure. Understanding
core conceptual notions, such as identical units and
tiling, was typical of students by the end of the elemen-
tary grades for length measure but not for area measure.
Younger children often employed resemblance as
the prime criterion for selecting a unit of area measure,
suggesting the need for attention to the qualities of unit

that make it suitable for area measure. Other studies
focus on students' conceptions of the area measure of
rectangles. Most often, rectangular area is treated in
schooling as a simple matter of multiplying lengths, but
the research suggests that many students in the elemen-
tary grades do not "see" this product as a measurement.
Many fail to structure even a simple form like a rectangle
as an array that could conceivably be measured with unit
squares. Current practices of giving students squares as
units may lead to apparent procedural competence but
fail to challenge students' preconceptions about what
makes a unit suitable. Moreover, many students under-
stand square units as things to be counted rather than as
subdivisions of the plane.

Classroom Studies

As with length measure, studies of developmental
trajectories of area measure in classrooms that emphasize
representation and communication reveal significant
departures from patterns typically described in the litera-
ture. For example, Lehrer et al. (1998a) found that an
effective way for second-grade students to begin working
on ideas about area was to solve problems involving par-
titioning and reallotment of areas without measuring. In
the course of this partitioning and rearranging, students
came to regard one of the partitions as a unit so that
counts of this unit afforded ready comparison among
areas. Later, children explored the suitability of different
units (e.g., beans) for finding the areas of irregular forms,
such as handprints, and found that units like squares had
the desirable properties of space-filling and identity.
By the end of the school year, these children had little
difficulty creating two-dimensional arrays of units for
rectangles. For example, one student's solution to the
question of whether the areas of 5 x 8 and 4 x 10 rec-
tangles (with unlabeled dimensions) were the same or
different is displayed in Figure 12.3. This student first
used length measure to partition each rectangle into unit
squares and then demonstrated that skip-counting by
columns or by rows of either resulted in the same count
(40). He also concluded that if he rotated the rectangle, he
could readily "see" commutativity because "5 X 8§ =8 X 5."

These second graders often spontaneously imposed
these kinds of arrays on nonpolygonal forms to find
approximate solutions to area. For example, one student's
solution to finding the space covered by her hand is dis-
played in Figure 12.4. She used color regions to repre-
sent approximate partitioning of units, such as one fourth
or one third. She collected these parts of units and added
them to the units completely enclosed by the figure
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3T =5KE

Figure 12.3. A student's visual demonstration of com-
mutativity of multiplication.

Figure 12.4. A second grader represents parts of units
with different colors and combines like-colored regions to
approximate whole units.

to arrive at an estimate of the area of her hand. These
findings suggest that mental restructuring of units of ar-
rays is assisted by classroom emphasis on representation
and argument. The developmental patterns noted so
often in the literature probably reflect the shortcomings
of typical experiences, including instruction.

Volume Measure

The measure of volume presents some additional
complexities for reasoning about the structure of space,
primarily because units of measure must be defined and
coordinated in three dimensions. The research con-
ducted often blends classroom study with description of
individual change, so this section and the one that fol-
lows on angle measure reflect this synthesis.

An emerging body of work addresses the strategies
that students employ to structure a volume, given a unit.
For example, Battista and Clements (1998) noted a range
of strategies employed by students in the third and fifth
grades to mentally structure a three-dimensional array of
cubes. Many students, especially the younger ones, could
count only the faces of the cubes, resulting in frequent
instances of multiple counts of a single cubic unit and a
failure to count any cubic units in the interior of the
cube. The majority of fifth-grade students, but only
about 20% of third-grade students, structured the array
as a series of layers. Layering enabled students to count
the number of units in one layer and then multiply or
skip-count to obtain the total number of cubic units in
the cube. These findings suggest that, as with area and
length, students' models of spatial structure influence
their conceptions of its measure.

Classroom studies again suggest that forms of repre-
sentation heavily influence how students conceive of
structuring volume. For example, third-grade students
with a wide range of experiences and representations of
volume measure structured space as three-dimensional
arrays. Unlike the younger students described in the Bat-
tista and Clements (1998) study, all could structure cubes
as three-dimensional arrays. Most even came to conceive
of volume as a product of area and height (Lehrer,
Strom, & Confrey, 2002). For example, one third
grader's solution for finding the volume of a cylinder is
displayed in Figure 12.5. The solution draws on the
method described in Figure 12.4 of finding parts to com-
pose whole units but refines the method to describe part-
whole relations as fractional pieces, such as one fourth.
Fractional pieces were then composed to estimate area
units, for example, 1/4 + 1/2 + 1/4 = 1. After estimating
the area of the circle in this manner, this student pro-
posed finding volume by multiplying the estimated area
by the height of the cylinder "to draw it [the area of the
base] through how tall it is."

Battista (1999) followed the activity of three pairs of
fifth-grade students as they predicted the number of
cubes that fit in graphically depicted boxes. He found
that student learning was affected both by individual
activity and by socially constituted practices like collective
reflection. Thus, traditional notions about trajectories of



development may need to be revised in light of more
careful attention to classroom talk and related means of
representing volume. Although the solution of the
third student depicted in Figure 12.5 is unusual in the
literature it was commonplace in a third grade

W ere students had prolonged opportunities to
ex-plore mathematics of space and measure.
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Figure 12.5. A third grader first uses colors to explicitly
mark fractional pieces of units to approximate the area of

the base of a cylinder and then finds volume as the product
of area and height.

Angle Measure

Freudenthal (1973) suggested that multiple mathe-
matical conceptions of angle should be entertained during
the course of schooling. Henderson (1996) suggests
three conceptions: (a) angle as movement, as in rotation
or sweep; (b) angle as a geometric shape, a delineation of
space by two intersecting lines; and (c) angle as a meas-
ure, a perspective that coordinates the other two.
Mitchelmore (1997, 1998) and Lehrer et al. (1998b)
found that students in the elementary grades develop
separate mental models of angle as movement and angle
as shape. In Mitchelmore's (1998) study, students in
Grades 2, 4, and 6 increasingly perceived how different
types of turning situations might be alike (e.g., those
involving unlimited turning, like a fan, and those involv-
ing limited turning, like a hinge), but they rarely related
these to situations involving "bends" or other aspects of
intersecting lines. Lehrer et. al (1998b) asked children to
find ways of measuring the bending in a hinge (with a

sweep demonstrated from one position to another) and
the bending in a bent pipe cleaner. Like the students in

Mitchelmore's studies, students in Grades 1 through 5

rarely saw a relationship between these situations, but
their measurement actions were very similar. Children
most often chose to measure the distance between the

jaws of the hinge and the ends of the pipe cleaners. In

these static contexts ("bends"), students typically thought

that angle measures were influenced by the lengths of
the intersecting lines or by their orientation in space.

The latter conception decreased with age, but the former
was robust at every age (Lehrer et al., 1998b).

As noted for length, area, and volume measure, the
tools employed or invented by students significantly
affected their developing conceptions of angle measure.
Studies of student learning with the Logo computer pro-
gram generally confirm the existence of distinct models
of angle as static or dynamic, respectively. Logo's Turtle
geometry affords the notion of angle as a rotation,
although students often confuse the interior and exterior
(turtle) angles of figures traced by the Turtle. Neverthe-
less, with well-crafted instruction, tools like Logo medi-
ate the development of angle measures as rotations
(Lehrer, Randle, & Sancilio, 1989). However, students
rarely bridge these rotations to models of the space in
the interior of figures traced by the Turtle (e.g.,
Clements, Battista, Sarama, & Swaminathan, 1996). Sim-
ple modifications to Logo help students perceive the
relationship between turns and traces (the path made by
Logo's Turtle), and in these conditions students can use
turns to measure static intersections of lines (Lehrer
et al., 1989).

It remains a major challenge to design pedagogy
to help students develop understanding of angle and
its measure. Unlike the spatial structuring of linear dimen-
sions (length, area, and volume), developing understanding
of angle requires novel forms of representation that are
perhaps not as prevalent in the culture (e.g., developing
notions of turn, tracing a locus of a turning movement,
relating turning movements to traces in environments like
Logo). In addition, understanding angle involves the coor-
dination of several potential models and integration of
these models in a theory of their measure (Mitchelmore &
White, 1998). Common admonitions to teach angles as
turns usually fail because students rarely spontaneously
relate situations involving rotations to those involving
shape and form. As I have stated often in this tour
of measure, the form of mediation (e.g., the tools, what
students write, the models they explore) matters as much
as the problems posed.
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Expanding the Scope of Measure

Most research has been inspired by the Piagetian tra-
dition of tight coupling between study of measure and
study of space, and research findings indeed indicate that
coming to understand measure is a productive means for
learning about the structure of space. Nevertheless, the
scope of measure often must extend beyond spatial ex-
tent, especially to support scientific reasoning. Although
research here is sparser, it suggests that children's con-
ceptions of measure can be extended to nonspatial
realms.

Understanding the Natural World

Measurement is essential for developing an under-
standing of the natural world (Crosby, 1997). By quanti-
fying and otherwise mathematizing nature (Kline, 1980),
students can model the natural world, even at an early
age. Although studies in science education often refer to
the importance of measure, they generally do not "un-
pack" its conceptual foundations, so measurement is
often viewed more as a matter of procedure than as a
matter of conception. Yet a small number of studies sug-
gest that developing concepts of measure can support
better understanding of natural phenomena. In short,
when children understand measure, its application to
natural phenomena yields enhanced understanding in a
manner reminiscent of the tight linkages between spatial
extent and spatial structure noted previously. For exam-
ple, third- and fifth-grade students who had the opportu-
nity to develop understanding of spatial measure (e.g.,
length, area, volume) readily extended these understand-
ings to the measure of mass. That is, with appropriate re-
minders from their teachers, they decided that units of
mass should be identical, conventional, iterable, and so
on. These understandings proved crucial for subsequent
modeling material kind as a ratio of mass and volume —
that is, density (Lehrer, Schauble, Strom, & Pligge,
2001). Similarly, third-grade children who had histories
of learning about measure readily extended their ideas
about unit to encompass rate, a ratio measure, to support
reasoning about the growth (e.g., change in height per
day) of plants (Lehrer, Schauble, Carpenter, & Penner,
2000). The challenges of ratio measures like these veer
into more general considerations of children's under-
standing of rational number and multiplicative structure
(e.g., Harel, Behr, Post, & Lesh, 1992). Unfortunately,
little research addresses these potential relationships be-
tween measure and multiplicative structure.

Precision and Error

Much of the research about measurement explores
precision and error of measure in relation to mental esti-
mation (Hildreth, 1983; Joram, Subrahmanyam, &
Gelman, 1998). To estimate a length, students at all ages
typically employ the strategy of mentally iterating stan-
dard units (e.g., imagining lining up a ruler with an
object). In their review of a number of instructional stud-
ies, Joram et al. (1998) suggest that students often
develop brittle strategies closely tied to the original con-
text of estimation. They suggest that instruction focus on
children's development of reference points (e.g., land-
marks) and on helping children establish reference points
and units along a mental number line. Mental estimation
would also likely be improved with more attention to the
nature of unit, as suggested by many of the classroom
studies reviewed previously.

Although mental estimation is one potential source of
imprecision in measure, error is a fundamental quality of
measure, a recognition that historically was quite trou-
bling to scientists (Porter, 1986). Acts of measuring yield
a range of estimates and, to the extent that errors are
random, often a Gaussian ("normal") distribution.
Hence, understanding of error is tied to conceptions
of distribution. Conceptions of error are also central to
scientific experimentation (Mayo, 1996). Schauble
(1996), for example, found that fifth- and sixth-grade
students who conducted experiments often confounded
error and the variation due to a small, but reliable, effect
of a variable. Perhaps they would not do so if they had
opportunities to consider likely sources of error. Kerr
and Lester (1976) suggest that instruction in measure
should routinely encompass considerations of sources of
error, especially (a) the assumptions (e.g., the model)
about the object to be measured, (b) the choice of meas-
uring instrument, and (c) the way the instrument is used
(e.g., method variation). Variation among individuals is
also commonly considered, especially in work in the so-
cial sciences. Recent work in classrooms explores chil-
dren's ideas about some of these sources of error.

Varelas (1997) examined how third- and fourth-grade
students made sense of the variability of repeated trials.
Many children apparently did not conceptualize the dif-
ferences among repeated observations as error, and chil-
dren often suggested that fewer trials might be prefer-
able to more. These conceptions seemed bound with
relatively diffuse conceptions of representative values of a
set of repeated trials. In a related study, Lehrer et al.
(2000) found that with explicit attention to ways of or-
dering and structuring trial-to-trial variability, second-
grade children made sense of trial-to-trial variation by
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suggesting representative (typical) values of sets of trials.
Choices of typical values included "middle numbers"
(i.e., medians) and modes, with a distinct preference for
the latter.

In follow-up work with fourth-grade students,
Petrosino, Lehrer, & Schauble (in press) further investi-
gated children's ideas about sources and representations
of measurement error. In one portion of the Petrosino
et al. (in press) classroom teaching experiment, fourth-
grade students measured the length of a pencil and the
height of a flagpole. They represented each distribution
of measurements, an accomplishment that involved
ordering and putting like values in "bins." Students
noticed differences in the comparative spread of each
distribution (see Figure 12.6, in which the right panel
depicts the pencil measures and the left panel, the flag-
pole measures) and readily attributed these differences to
the relative precision of measure of the instruments
available to conduct each measure (rulers vs. "height-o-
meters"). The distribution obtained in each case was
attributed primarily to individual differences in use of
each instrument.
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Figure 12.6. Distributions of fourth-grade students' meas-
urements of the height of a flagpole (in m, left) and the
length of a pencil (in cm, right).

When pressed to describe the differences in the spread
that they perceived, students, with the assistance of their
teacher, developed the notion of a "spread number" to

quantify variation. One of the procedures invented by the
class consisted of finding the median of the differences

between observed measures and the typical measure (in

this class, a median). Armed with these understandings,
students went on to investigate a variety of sources of
error and their consequences for a distribution of values.
For example, Figure 12.7 displays the distributions
of differences of observed values from the median for
flagpoles measured with two different instruments (the
left panel depicts errors with a handmade instrument,

and the right panel depicts errors with a machined in-
strument). These distributions sparked examination
of the comparative reliability of each instrument. This
research suggests how relationships between variation

and sources of error might be explored and elaborated in
later grades. Such understandings are important founda-

tions to the conduct of experiment and related forms of
scientific explanation (Lehrer, Schauble, & Petrosino,
2001).
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Figure 12.7. Distributions of differences of observed val-
ues from the median value of the height of a flagpole for
measurements made with homemade (left) and machined
(right) instruments.

Concluding Comments

Children are tacit measurers of nearly everything. Early
and repeated experiences with cultural artifacts like rulers,
and with the general epistemology of quantification that is
characteristic of many contemporary societies, provides a
fertile ground for developing mathematical understanding
of measure. Developmental research suggests that chil-
dren's conceptions of measure reflect a collection of
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emerging concepts whose coordination gradually unfolds
as a network of relations, not a unitary concept of meas-
ure. Understanding some of these relationships spans the
course of schooling. Classroom research points to the
importance of helping children go beyond procedural
competence to learn about the mathematical under-
pinnings of measure so that procedures and concepts are
mutually bootstrapped. Measuring always involves doing,
and such activity is always conducted in light of some
model of the attribute being measured. Consequently,
measuring a length, area, volume, or angle affords
opportunities for developing ideas about the structure of
space, such as its dimension, array, and curvature.
Understanding structures like these, in turn, provides a
platform for increased comprehension of number, as
exemplified in spatial models like the number line or area
models of rational number.

No clear-cut "best" sequence of instruction seems to
exist in any domain of measure nor any reasonable list of
prescriptions or proscriptions other than the need to
avoid exclusive reliance on the development of proce-
dural competence. As in other domains of mathematics,
procedural competence (e.g., measuring with a ruler) can
bootstrap conceptual development (e.g., inferring more
general principles on the basis of the design of the ruler).
Developing knowledge of effective procedures is a form
of conceptual development, and developing concepts is
aided and abetted by constructing and reflecting on ways
to measure. Classroom studies emphasize the importance
of helping children understand the rationale of familiar
tools, such as rulers, and of finding productive ways for
engaging children in the guided reinvention of such cru-
cial concepts of measure as unit-attribute relations (e.g.,
length is not the measure of all things) and the very idea
of unit. Teachers who understand the growth and develop-
ment of student reasoning about measure are our collective
"best bet" for generating productive learning about
measurement.
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